K+-independent actions of diazoxide question the role of inner membrane KATP channels in mitochondrial cytoprotective signaling.
نویسندگان
چکیده
Activation by diazoxide and inhibition by 5-hydroxydecanoate are the hallmarks of mitochondrial ATP-sensitive K+ (K(ATP)) channels. Opening of these channels is thought to trigger cytoprotection (preconditioning) through the generation of reactive oxygen species. However, we found that diazoxide-induced oxidation of the widely used reactive oxygen species indicator 2',7'-dichlorodihydrofluorescein in isolated liver and heart mitochondria was observed in the absence of ATP or K+ and therefore independent of K(ATP) channels. The response was blocked by stigmatellin, implying a role for the cytochrome bc1 complex (complex III). Diazoxide, though, did not increase hydrogen peroxide (H2O2) production (quantitatively measured with Amplex Red) in intact mitochondria, submitochondrial particles, or purified cytochrome bc1 complex. We confirmed that diazoxide inhibited succinate oxidation, but it also weakly stimulated state 4 respiration even in K+-free buffer, excluding a role for K(ATP) channels. Furthermore, we have shown previously that 5-hydroxydecanoate is partially metabolized, and we hypothesized that fatty acid metabolism may explain the ability of this putative mitochondrial K(ATP) channel blocker to inhibit diazoxide-induced flavoprotein fluorescence, commonly used as an assay of K(ATP) channel activity. Indeed, consistent with our hypothesis, we found that decanoate inhibited diazoxide-induced flavoprotein oxidation. Taken together, our data question the "mitochondrial K(ATP) channel" hypothesis of preconditioning. Diazoxide did not evoke superoxide (which dismutates to H2O2) from the respiratory chain by a direct mechanism, and the stimulatory effects of this compound on mitochondrial respiration and 2',7'-dichlorodihydrofluorescein oxidation were not due to the opening of K(ATP) channels.
منابع مشابه
Connexin 43 acts as a cytoprotective mediator of signal transduction by stimulating mitochondrial K(ATP) channels in mouse cardiomyocytes.
Potassium (K+) channels in the inner mitochondrial membrane influence cell function and survival. Increasing evidence indicates that multiple signaling pathways and pharmacological actions converge on mitochondrial ATP-sensitive K+ (mitoKATP) channels and PKC to confer cytoprotection against necrotic and apoptotic cell injury. However, the molecular structure of mitoKATP channels remains unreso...
متن کاملBiophysical and electropharmacological properties of single mitoKATP channel in rat brain mitochondrial inner membrane
Introduction: Different ATP-sensitive potassium channels have been detected in the mitochondrial inner membrane of cells. They are suggested to be involved in cell processes including cell protection. Here, we characterized the biophysical and electropharmacological properties of a KATP channel in the brain mitochondrial inner membranes. Methods: After removing and homogenizing the rat brain...
متن کاملنقش کانالهای پتاسیم حساس به ATP (KATP) در آسیب ناشی از ایسکمی و برقراری مجدد جریان خون در کلیه موش صحرایی
The precise mechanism of ischemia reperfusion (IR) injury is not fully understood. Recent studies on Rat myocardium revealed that activation of the K ATP channels inhibits this process. The goal of this study is finding the same effect of K ATP channels on IR injury, in rat kidney. In this study the effects of K ATP agonist (Diazoxide) and K ATP antagonist (Glibenclamide) plus a K ATP i...
متن کاملPharmacological and histochemical distinctions between molecularly defined sarcolemmal KATP channels and native cardiac mitochondrial KATP channels.
A variety of direct and indirect techniques have revealed the existence of ATP-sensitive potassium (KATP) channels in the inner membranes of mitochondria. The molecular identity of these mitochondrial KATP (mitoKATP) channels remains unclear. We used a pharmacological approach to distinguish mitoKATP channels from classical, molecularly defined cardiac sarcolemmal KATP (surfaceKATP) channels en...
متن کاملExploring the role and inter-relationship among nitric oxide, opioids, and KATP channels in the signaling pathway underlying remote ischemic preconditioning induced cardioprotection in rats
Objective(s): This study explored the inter-relationship among nitric oxide, opioids, and KATP channels in the signaling pathway underlying remote ischemic preconditioning (RIPC) conferred cardioprotection. Materials and Methods: Blood pressure cuff was placed around the hind limb of the animal and RIPC was performed by 4 cycles of infla...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 281 33 شماره
صفحات -
تاریخ انتشار 2006